Pressure-overload-induced subcellular relocalization/oxidation of soluble guanylyl cyclase in the heart modulates enzyme stimulation.

نویسندگان

  • Emily J Tsai
  • Yuchuan Liu
  • Norimichi Koitabashi
  • Djahida Bedja
  • Thomas Danner
  • Jean-Francois Jasmin
  • Michael P Lisanti
  • Andreas Friebe
  • Eiki Takimoto
  • David A Kass
چکیده

RATIONALE Soluble guanylyl cyclase (sGC) generates cyclic guanosine monophophate (cGMP) upon activation by nitric oxide (NO). Cardiac NO-sGC-cGMP signaling blunts cardiac stress responses, including pressure-overload-induced hypertrophy. The latter itself depresses signaling through this pathway by reducing NO generation and enhancing cGMP hydrolysis. OBJECTIVE We tested the hypothesis that the sGC response to NO also declines with pressure-overload stress and assessed the role of heme-oxidation and altered intracellular compartmentation of sGC as potential mechanisms. METHODS AND RESULTS C57BL/6 mice subjected to transverse aortic constriction (TAC) developed cardiac hypertrophy and dysfunction. NO-stimulated sGC activity was markedly depressed, whereas NO- and heme-independent sGC activation by BAY 60-2770 was preserved. Total sGCα(1) and β(1) expression were unchanged by TAC; however, sGCβ(1) subunits shifted out of caveolin-enriched microdomains. NO-stimulated sGC activity was 2- to 3-fold greater in Cav3-containing lipid raft versus nonlipid raft domains in control and 6-fold greater after TAC. In contrast, BAY 60-2770 responses were >10 fold higher in non-Cav3 domains with and without TAC, declining about 60% after TAC within each compartment. Mice genetically lacking Cav3 had reduced NO- and BAY-stimulated sGC activity in microdomains containing Cav3 for controls but no change within non-Cav3-enriched domains. CONCLUSIONS Pressure overload depresses NO/heme-dependent sGC activation in the heart, consistent with enhanced oxidation. The data reveal a novel additional mechanism for reduced NO-coupled sGC activity related to dynamic shifts in membrane microdomain localization, with Cav3-microdomains protecting sGC from heme-oxidation and facilitating NO responsiveness. Translocation of sGC out of this domain favors sGC oxidation and contributes to depressed NO-stimulated sGC activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrative Physiology Pressure-Overload–Induced Subcellular Relocalization/Oxidation of Soluble Guanylyl Cyclase in the Heart Modulates Enzyme Stimulation

Rationale: Soluble guanylyl cyclase (sGC) generates cyclic guanosine monophophate (cGMP) upon activation by nitric oxide (NO). Cardiac NO–sGC-cGMP signaling blunts cardiac stress responses, including pressureoverload–induced hypertrophy. The latter itself depresses signaling through this pathway by reducing NO generation and enhancing cGMP hydrolysis. Objective: We tested the hypothesis that th...

متن کامل

Pharmacological stimulation of soluble guanylate cyclase modulates hypoxia-inducible factor-1 in rat heart

Tsuruda T, Hatakeyama K, Masuyama H, Sekita Y, Imamura T, Asada Y, Kitamura K. Pharmacological stimulation of soluble guanylate cyclase modulates hypoxia-inducible factor-1 in rat heart. Am J Physiol Heart Circ Physiol 297: H1274–H1280, 2009. First published August 14, 2009; doi:10.1152/ajpheart.00503.2009.—Mechanical load and ischemia induce a series of adaptive physiological responses by acti...

متن کامل

Pharmacological stimulation of soluble guanylate cyclase modulates hypoxia-inducible factor-1alpha in rat heart.

Mechanical load and ischemia induce a series of adaptive physiological responses by activating the expression of O(2)-regulated genes, such as hypoxia inducible factor-1alpha (HIF-1alpha). The aim of this study was to explore the interaction between HIF-1alpha and soluble guanylate cyclase (sGC) and its second messenger cGMP in cultured cardiomyocytes exposed to hypoxia and in pressure-overload...

متن کامل

Selective guanylyl cyclase inhibitor reverses nitric oxide-induced vasorelaxation.

Effects of a novel soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), were characterized on guanylyl cyclase activity in cytosolic fraction of COS-7 cells overexpressing the alpha 1 and beta 1 subunits of the rat soluble enzyme. ODQ was a noncompetitive inhibitor of soluble guanylyl cyclase with respect to Mn2+ or Mn(2+)-GTP and was a mixed competitive/noncom...

متن کامل

Cinaciguat prevents the development of pathologic hypertrophy in a rat model of left ventricular pressure overload

Pathologic myocardial hypertrophy develops when the heart is chronically pressure-overloaded. Elevated intracellular cGMP-levels have been reported to prevent the development of pathologic myocardial hypertrophy, therefore we investigated the effects of chronic activation of the cGMP producing enzyme, soluble guanylate cyclase by Cinaciguat in a rat model of pressure overload-induced cardiac hy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 110 2  شماره 

صفحات  -

تاریخ انتشار 2012